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Abstract
Automatic differentiation (AD) is a central algorithm in deep
learning and the emerging field of differentiable program-
ming. However, the performance of AD remains a significant
bottleneck in these fields. Training large models requires re-
peatedly evaluating gradients via AD potentially millions
of times. Additionally, the most common form of AD incurs
an asymptotically large memory cost relative to the original
function being differentiated.
This paper introduces LAGrad, a reverse-mode, source-

to-source AD system that leverages high-level information
in MLIR to produce efficient differentiated code. LAGrad
employs a collection of novel static optimizations that benefit
from the semantics of high-level MLIR dialects to exploit the
sparsity and structured control flow of generated code.

Using these, LAGrad is able to achieve speedups of up to
2.8× and use 35× less memory relative to state of the art
AD systems on real-world machine learning and computer
vision benchmarks.

CCS Concepts: • Mathematics of computing → Auto-
matic differentiation; • Software and its engineering
→ Source code generation.

Keywords: automatic differentiation, MLIR, differentiable
programming, static analysis, sparsity
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1 Introduction
The widespread adoption of deep learning has led to a grow-
ing interest in using gradient-based optimization to learn
parameterized differentiable programs. This new paradigm,
known as differentiable programming, is a generalization of
deep learning. It has already seen success in applications
such as physics simulations [4], ray tracing [13], and many
other fields [10, 12, 14].
Differentiable programming relies on the ability to auto-

matically compute gradients of trainable parameters. The
standard way to do this is via Automatic Differentiation (AD),
which applies the chain rule to precisely compute derivatives,
gradients, and Jacobians given only an objective function. AD
avoids the disadvantages of finite differences and symbolic
differentiation while relieving programmers from writing
gradient code by hand [6, 21]. However, training via AD re-
mains an expensive task which can involve millions of steps
using gradient descent, requiring recomputing the gradient
with respect to all model parameters at each step.

The current AD landscape consists of three orthogonal,
contrasting axes, each of which are discussed in turn: 1)
Operator-overloading vs source-to-source AD; 2) Forward
mode vs reverse mode AD; and 3) Performing AD at different
abstraction levels (high-level vs low-level).

Operator-overloading systems trace program execution at
run time, transparently replacing operations with their differ-
ential versions. This sacrifices the potential for ahead-of-time
optimizations of the gradient code. Source-to-source systems,
on the other hands, analyze input programs to generate
their differentiated versions at compile time. These systems
have historically been less expressive than their operator-
overloading counterparts, but recent work has shown re-
newed interest due to the potential for whole-program opti-
mization of the generated code [9, 16, 20, 25], and this is the
approach taken in this paper.
Forward-mode AD augments each step of the input pro-

gram with a dual operations that compute derivative infor-
mation in the same order as the original program. Unfor-
tunately, forward-mode is prohibitively expensive for most
ML applications as computing a gradient vector requires ex-
ecuting the forward sweep for each element of the gradient
vector, which are typically numbered in the millions. For this
reason, this work focuses on reverse-mode AD.
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Reverse-mode AD involves running the original program
to construct a computation graph, then propagating deriva-
tive information backwards through the graph. It is capable
of computing an entire gradient vector in a single reverse
sweep, but its inverted control flow means that some re-
quired intermediate values could potentially be overwritten.
Reverse-mode AD thus requires a gradient tape: a data struc-
ture that records these intermediate values. This tape can
become quite large and be detrimental to performance, even
when so-called “tapeless” approaches are used as the inter-
mediate values are still stored through mechanisms such as
closures and delimited continuations [18, 22, 25].
Finally, AD can be applied on source languages of dif-

ferent abstraction levels. Popular ML frameworks such as
PyTorch [17], JAX [5], and TensorFlow [1] perform AD on
high-level multidimensional arrays. In contrast, Enzyme [16]
differentiates at the low-level of LLVM IR, which means it
can differentiate through programs written in a large number
of source languages that target LLVM. However, the low-
level nature of LLVM IR may hinder opportunity for novel,
AD-specific optimizations.

This work introduces LAGrad, a source-to-source AD sys-
tem that operates on high-level MLIR. LAGrad aims to main-
tain the generality of targeting a common compiler IR while
preserving high-level information to facilitate the develop-
ment of AD-specific optimizations. As we will see in this
paper, LAGrad applies several optimizations such as tape size
reduction and exploitation of sparsity using the information
preserved in high-level MLIR.
The experimental results collected on CPU benchmarks

demonstrate the benefit of these optimizations by achieving
up to 2.8× speedup relative to Enzyme [16], the current
state-of-the-art system, and up to 1400× speedup relative
to PyTorch [17], a popular industry-standard ML library.
LAGrad is also able to reduce memory consumption by up
to 35× relative to Enzyme and 103× relative to PyTorch.
The main contributions of this paper are:

• LAGrad, an MLIR-based AD system that shows the
advantage of using high-level information in source-
to-source AD to generate efficient code.

• Three novel static optimizations (tape size reduction,
active sparsity, and adjoint sparsity) that improve effi-
ciency of reverse-mode AD.

• An evaluation of LAGrad against two state-of-the-art
systems, PyTorch [17] and Enzyme [16] on a standard
AD benchmark suite [21] that shows it outperforms
the state of the art performance for both run time and
memory consumption.

The rest of the paper is organized as follows. Section 2
gives preliminary overviews of both AD and relevant as-
pects of MLIR. Section 3 discusses unique characteristics
of LAGrad’s AD implementation due to the semantics of

Primal Adjoint

𝑧 = 𝑤𝑥 + 𝑏 𝜎 = −(𝑦) 1
𝜎2

𝜎 = 1 + 𝑒−𝑧 𝑧 = −(𝜎)𝑒−𝑧

𝑦 =
1
𝜎

𝑤 = 𝑧𝑥

Figure 1. An example of computing𝑤 =
𝑑𝑦

𝑑𝑤
using reverse-

mode AD. The primal function is broken down into pieces,
each of which are replaced with a pullback in reverse order
to produce the differentiated adjoint. 𝑦 =

𝑑𝑦

𝑑𝑦
is called the

seed value, which is initialized to 1 when 𝑦 is a scalar.

MLIR, in addition to a discussion of tape size reduction. Sec-
tion 4 describes the static optimizations employed after the
AD process is completed. Section 5 evaluates the efficacy
of LAGrad’s optimizations individually and against existing
state-of-the-art methods. Section 6 discusses related work
and the precise aspects of LAGrad that differentiate it from
prior work, while Section 7 offers concluding remarks.

2 Background and Notation
2.1 Automatic Differentiation
Given a program that computes a function𝑦 = 𝑓 (𝑥), the goal
of reverse-mode AD is to compute the derivative 𝑑𝑦

𝑑𝑥
. The

original program is called the primal while the program that
computes the derivative is called the adjoint. The notation 𝑧

is used to refer to 𝑑𝑦

𝑑𝑧
for any input or intermediate value 𝑧.

AD accomplishes this using the chain rule of calculus:
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑧𝑛

𝑑𝑧𝑛

𝑑𝑧𝑛−1
. . .

𝑑𝑧2

𝑑𝑧1

𝑑𝑧1

𝑑𝑥

The primal consists of multiple simple operations (each pro-
ducing a 𝑧𝑖 intermediate value). The overall derivative is
computed by propagating (via multiplication) information
from the output back to the input in a backward pass.

Each differentiated version of a primal operation is called
a pullback [9]. The pullback for the operation that produces
𝑧𝑖 is a function that takes the propagated gradient signal, 𝑧𝑖 =
𝑑𝑦

𝑑𝑧𝑛
. . .

𝑑𝑧𝑖+1
𝑑𝑧𝑖

, and the input(s) 𝑧𝑖−1 to yield 𝑧𝑖−1. An example is
outlined in Figure 1. As can be seen, the adjoint expressions
for 𝜎 and 𝑧 contain dependencies on intermediate values
computed in the primal (𝜎 and 𝑧 respectively). In general,
the primal must execute to produce these values before the
adjoint can be run. If these values are overwritten prior to
their use in the adjoint, theymust be explicitly saved to a data
structure known as the tape [9]. The tape is a fundamental
data structure of reverse-mode AD and incurs a memory
overhead that does not exist in the original program.

When 𝑥 and 𝑦 are vectors, AD can be used to compute the
Jacobian matrix. Reverse-mode AD computes the gradient
of one element of 𝑦 with respect to all elements of 𝑥 (thus
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computing a row of the Jacobian) with a single backward
pass. This property makes reverse-mode AD popular in ML
applications, which typically have many trainable parame-
ters and a scalar-valued objective function. Computing the
full Jacobian of a function with𝑚 outputs requires𝑚 back-
ward passes. Computing the 𝑖th row of the Jacobian requires
initializing a seed vector using the 𝑖th column of the identity
matrix (i.e., 1 in the 𝑖th position and 0 elsewhere).

2.2 Tensors and the Linalg Dialect
Tensors in MLIR are an abstract representation of multidi-
mensional arrays without a concrete underlying memory
representation. Tensors are immutable, so operations on ten-
sors that would update their values semantically return a
copy to avoid mutating the underlying memory. Code that
strictly uses tensors is thus free from side effects.

A tensor’s type contains an optional encoding — metadata
used to describe tensor data. As we will see later, LAGrad
uses this field to denote structured sparsity patterns.

Tensors are lowered to memrefs, multidimensional arrays
that possess explicit underlying storage, in a process known
as bufferization. Memrefs are mutable and must be explicitly
allocated and deallocated. By default, bufferization will al-
locate new memrefs on every new tensor and linalg op to
preserve that the immutability semantics of tensors.
The linalg dialect consists of operations that perform

high-level linear algebra computation. These operations can
all be expressed as the linalg.generic op, which is a general
abstraction over parallel loop nests. It contains the following:

• One or more tensor inputs that map to outputs.
• An indexing map for each input and output, which
describes how to index into each tensor from the iter-
ation variables of each loop.

• An iterator type for each loop, which explicitly define
which loops correspond to reductions of the outputs.

• A body, which is a basic block that defines what op-
erations must be performed for each iteration of the
innermost loop.

A linalg.generic op that takes 𝑁 input tensors 𝑇1, . . . ,𝑇𝑁
with indexing maps𝑚𝑎𝑝1, . . .𝑚𝑎𝑝𝑁 and contains𝑚 iterators
𝑑0, . . . , 𝑑𝑚 to produce output tensor 𝑂𝑢𝑡 with indexing map
𝑚𝑎𝑝𝑂 via body function 𝑓 is expressed as follows:

for d0 from 0 to <inferred d0 bound >:

...

for dm from 0 to <inferred dm bound >:

𝑂𝑢𝑡 [𝑚𝑎𝑝𝑂 ] = 𝑓 (𝑇1 [𝑚𝑎𝑝1 ], . . . ,𝑇𝑁 [𝑚𝑎𝑝𝑁 ],𝑂𝑢𝑡 [𝑚𝑎𝑝𝑂 ] )

Observe that each indexing map is a function that maps
𝑑0, . . . , 𝑑𝑚 to a (possibly permuted) subset of its inputs. The
loop bounds of each iterator are inferred by MLIR to iterate
completely over the arguments.

Figure 2. An overview of the approach taken in this work.
The path of lowering before AD is the current state-of-the-
art approach. The alternate path denoted by bolded arrows
is taken by LAGrad, the contribution of this work.

For simplicity, this paper makes use of a Tensor Compre-
hensions (TC) [24] style notation to compactly show linalg

.generic ops. Examples of full ops and their corresponding
TC-style representations are shown later in Figure 3.

3 Auto. Differentiation on MLIR Tensors
This work proposes differentiating at the tensor MLIR [11]

level, striking a middle ground between high-level operator
overloading libraries and low level LLVM IR. An overview
of this work is outlined in Figure 2. This remainder of this
section outlines how differentiating at the MLIR level pro-
duces adjoint code that preserves the structure of the primal
and is amenable to high-level optimizations.
MLIR expresses programs in Static Single Assignment

(SSA) form [3], but differs from traditional SSA-form IRs by
including the ability to express control flow through struc-
tured constructs (scf.if, scf.for, and linalg.generic) rather
than basic blocks in a control flow graph. As we will see,
the use of structured control flow enables AD-specific static
optimizations that would be much harder to express on un-
structured control flow graphs.

The complete set of operators supported by LAGrad con-
sist of basic mathematical operators (arith.addf, math.tanh),
if-statements (scf.if), and looping constructs (scf.for, linalg
.generic). The process of differentiating scalar SSA programs
in the absence of control flow is well documented, and we
refer to [9] for a more in-depth discussion.
Basic mathematical MLIR operations like arith.addf can

operate on scalars or tensors with identical shapes. These
operations are elementwise where the same operation is per-
formed for every element (or pair of elements) of its inputs.
These can be differentiated identically to scalar arguments
without special handling [9].

3.1 Differentiating Operators in MLIR
scf.if. To handle conditionals in the form of scf.if ops, LA-
Grad need only ensure that the condition value remains
accessible so the adjoint can “replay” the branch that was
taken (with the exception of scf.if ops inside loops, which is
discussed later). LAGrad then collects free values that appear
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1 %result = linalg.generic

2 { indexing_maps = [

3 affine_map <(d0, d1, d2) -> (d0, d2) >,

4 affine_map <(d0, d1, d2) -> (d2, d1)>,

5 affine_map <(d0, d1, d2) -> (d0, d1) > ],

6 iterator_types = [

7 "parallel", "parallel" , "reduction" ] }

8 ins( %A , %B : tensor <?x?xf32 >, tensor <?x?xf32 >)

9 outs( %C : tensor <?x?xf32 >) {

10 ^bb0(%arg0: f32 , %arg1: f32 , %arg2: f32):

11 %0 = arith.mulf %arg0 , %arg1 : f32

12 %1 = arith.addf %arg2 , %0 : f32

13 linalg.yield %1 : f32 } -> tensor <?x?xf32 >

𝐶 [𝑖, 𝑗] += 𝐴[𝑖, 𝑘] ∗ 𝐵 [𝑘, 𝑗]

%pullback = linalg.generic

{ indexing_maps = [

affine_map <(d0, d1, d2) -> (d0, d1) >,

affine_map <(d0, d1, d2) -> (d2, d1)>,

affine_map <(d0, d1, d2) -> (d0, d2) > ],

iterator_types = [

"parallel", "reduction" , "parallel" ] }

ins( %dC , %B : tensor <?x?xf32 >, tensor <?x?xf32 >)

outs( %dA : tensor <?x?xf32 >) {

^bb0(%arg0: f32 , %arg1: f32 , %arg2: f32):

%0 = arith.mulf %arg0 , %arg1 : f32

%1 = arith.addf %arg2 , %0 : f32

linalg.yield %1 : f32 } -> tensor <?x?xf32 >

𝑑𝐴[𝑖, 𝑘] += 𝑑𝐶 [𝑖, 𝑗] ∗ 𝐵 [𝑘, 𝑗]

Figure 3. Left: A linalg.generic op corresponding to a matrix multiplication in MLIR. Right: Its corresponding pullback with
respect to %A. The differences as a result of the AD process are highlighted.

in either branch of the if op and generates a corresponding
adjoint scf.if op for each of them.
scf.for. The process to differentiate loops involves emit-

ting an adjoint loop that iterates the same number of times as
the primal, but in reverse. The loop body is then recursively
differentiated with respect to both loop-carried iteration ar-
guments and free variables.

scf.for loops in MLIR present the challenge of contain-
ing SSA values whose values will change over the course
of the primal execution. The adjoint will often depend on
these values from every iteration of the primal loop, meaning
the values must be recorded to memory in a data structure
known as the tape [8, 9]. The tape introduces a memory
overhead that is avoidable in certain contexts, which is later
discussed in Section 3.2.
linalg.generic. Differentiating a linalg.generic op will

produce new linalg.generic ops. For simplicity, our discus-
sion assumes each op produces one result. Multiple results
involve performing the same procedure for each result.

Recall the following representation of a linalg.generic op:

for d0 from 0 to <inferred d0 bound >:

...

for dm from 0 to <inferred dm bound >:

𝑂𝑢𝑡 [𝑚𝑎𝑝𝑂 ] = 𝑓 (𝑇1 [𝑚𝑎𝑝1 ], . . . ,𝑇𝑁 [𝑚𝑎𝑝𝑁 ],𝑂𝑢𝑡 [𝑚𝑎𝑝𝑂 ] )

Suppose the pullback with respect to 𝑇𝑖 , 1 < 𝑖 < 𝑁 is
desired. Its differential value 𝑇𝑖 is assigned 𝑚𝑎𝑝𝑖 , then 𝑓

is differentiated to yield 𝑓 ′ with respect to 𝑇𝑖 [𝑚𝑎𝑝𝑖 ]. This
produces the following adjoint:

for d0 from 0 to <inferred d0 bound >:

...

for dm from 0 to <inferred dm bound >:

𝑇𝑖 [𝑚𝑎𝑝𝑖 ]=𝑓 ′ (𝑇1 [𝑚𝑎𝑝1 ], . . . ,𝑇𝑁 [𝑚𝑎𝑝𝑁 ],𝑂𝑢𝑡 [𝑚𝑎𝑝𝑂 ],𝑇𝑖 [𝑚𝑎𝑝𝑖 ] )

Iterator types of the adjoint are inferred by examining
𝑚𝑎𝑝𝑂 . Input dimensions that appear in the map’s results are
marked "parallel", while others are marked "reduction".
A full MLIR code example of this process is found in Fig-

ure 3. The values %dA and %A use the same indexing map, as
do %dC and %C. The iterator types are inferred based on𝑚𝑎𝑝𝐴.
This differentiation procedure requires that the output

argument of the generic op is not effectively used. The reason
for this is further discussed in subsection 3.2 after covering
the tape in more detail. If this condition is not met, a fallback
is to immediately lower the generic op to an scf.for op and
differentiate it as such.

3.2 Tape Size Reduction
A challenge of reverse mode AD (compared to forward mode)
is the need to record primal values on the gradient tape. In
some cases, these values can be recomputed instead of stored.
LAGrad employs a novel static analysis that builds on prior
work [8] to detect when it is beneficial to recompute.

A primal loop typically contains values that are overwrit-
ten during its execution. Given the immutable nature of SSA
values in MLIR, these overwritten values must be explicitly
represented in the iter_args of loops. For example:

func @f(%x: f32 , %n: index) -> f32 {

%r = scf.for %iv=0 to %n iter_args (%r_i = 0.0){

%y = %iv * %iv : f32

scf.yield %r_i + (%y * %x[%iv]) : f32 }

return %r : f32 }

The adjoint loop may require these values (e.g., %y) from all
iterations, which requires their storage on the tape:

func @grad_f_v1 (%x: f32 , %n: index) -> f32 {

%tape = memref.alloc(%n) : memref <?xf32 >

%r = scf.for %iv=0 to %n iter_args (%r_i =0.0){

%y = %iv * %iv : f32

231



LAGrad: Statically Optimized Differentiable Programming in MLIR CC ’23, February 25–26, 2023, Montréal, QC, Canada

1 %slice = tensor.extract_slice %A[2] : tensor <4x5xf64 > to tensor <5xf64 >

2 %updated = linalg.generic ... outs(%slice) ...

3 %result = tensor.insert_slice %updated into %A[2] : tensor <5xf64 > into tensor <4x5xf64 >

Listing 1. A tensor program that exhibits the read/update/write pattern optimizable to an in-place update.

memref.store %y, %tape[%iv]

scf.yield %r_i + (%y * %x) : f32 }

%dr= arith.constant 1.0 : f32

%dx= scf.for %iv=%n-1 to -1 step -1 iter_args (%

dx_i =0.0){

%y = memref.load %tape[%iv] : f32

scf.yield %dx_i + %dr * %y : f32 }

return %dx : f32 }

%y can instead be cheaply recomputed to eliminate both
the tape and the primal loop, leaving only the adjoint:

func @grad_f_v2 (%x: f32 , %n: index) -> f32 {

%dr = arith.constant 1.0 : f32

%dx = scf.for %iv=%n-1 to -1 step -1 iter_args (%

dx_it =0.0) {

%y = %iv * %iv : f32

scf.yield %dx_it + %dr * %y : f32 }

return %dx : f32 }

Observe that every loop contains some values that depend
on previous iterations, and others that do not. For a loop ℓ ,
we define the following sets:

• 𝑉𝑎𝑙𝑠 (ℓ): the set of values defined in the body of ℓ .
• 𝐼𝑡𝑒𝑟𝑉𝑎𝑙𝑠 (ℓ): the set of values that are carried through
ℓ , or equivalently, the set of values that possibly have
data dependencies on previous iterations of ℓ .

𝐼𝑡𝑒𝑟𝑉𝑎𝑙𝑠 (ℓ) can be computed by traversing the iter_args

of loops to find values that depend on the iter_args.
When loops are differentiated, the primal loop ℓ yields

an adjoint loop 𝜕ℓ . We define the set 𝐴𝑑 𝑗𝑈 (ℓ) as the set of
values defined in ℓ and used in 𝜕ℓ . We say values in𝐴𝑑 𝑗𝑈 (ℓ)
are effectively used. The computation of 𝐴𝑑 𝑗𝑈 (ℓ) is prior
work done by implementing a static analysis outlined in [8].

If 𝐴𝑑 𝑗𝑈 (ℓ) ∩ 𝐼𝑡𝑒𝑟𝑉𝑎𝑙𝑠 (ℓ) = ∅, then all required primal
values in the adjoint loop can be recomputed with one iter-
ation of the primal, signalling that recomputation is cheap.
Otherwise, recomputation will require multiple primal it-
erations for each adjoint iteration, potentially incurring an
asymptotically worse complexity than the original program.
If both recomputation is cheap and the result of the pri-

mal loop is not effectively used, LAGrad emits an adjoint
that does not include the primal loop because it is unneces-
sary for the adjoint computation. Required primal values are
recomputed within the body of the adjoint.

Other source-to-source AD systems are able to detect sim-
ilar opportunities to avoid tape usage in simple examples
via existing optimizations in LLVM [9, 16]. However, this
new approach scales to arbitrarily complex code containing

nested loops, conditionals, and linalg ops. We will see the
effect this has on memory usage in the evaluation.

The potential presence of the tape when loop carried val-
ues are in 𝐴𝑑 𝑗𝑈 is why linalg ops cannot be differentiated
when its output arguments are effectively used. The tape
introduces a dependency on the primal iteration order, vio-
lating the parallel semantics of linalg iterators. This necessi-
tates that such ops to be first lowered to sequential loops.

4 Post-AD Optimizations
Once adjoint code is generated, it can be optimized by the
compiler prior to being lowered via bufferization to mem-
refs and then to LLVM. This section discusses optimizations
performed immediately after AD is performed.

4.1 In-place Bufferization
Recall that MLIR’s default bufferization will allocate new
memory on each tensor op to preserve the immutability
semantics of tensors. This process incurs a potentially large
performance and memory overhead.
LAGrad contains several custom bufferization passes to

avoid unneeded allocations and copies of memory due to
MLIR’s default bufferization. These passes focus on slic-
ing operations on tensors, namely tensor.extract_slice and
tensor.insert_slice. This work introduces Insert-Extract (IE)
Analysis to find cases where a slice of a tensor is used as the
output of a linalg.generic op before that slice is written to
the same location in the original tensor. Consider Listing 1.
Default bufferization creates newmemory allocations for the
extract, intermediate computation, and subsequent insertion:

// Allocate + copy for tensor.extract_slice

%slice = memref.alloc() : memref <5xf64 >

%subview = memref.subview %A[2] : memref <4x5xf64 >

to memref <5xf64 >

linalg.copy(%subview , %slice)

// Allocate + copy for linalg.generic

%updated = memref.alloc() : memref <5xf64 >

linalg.copy(%slice , %updated)

linalg.generic ... outs(% updated) ...

// Allocate + 2 copies for tensor.insert_slice

%result = memref.alloc() : memref <4x5xf64 >

linalg.copy(%A, %result)

%write_view = memref.subview %result [2] : memref <4

x5xf64 > to memref <5xf64 >

linalg.copy(%updated , %write_view)

In contrast, IE bufferization results in the intermediate com-
putation writing to memory directly in-place:
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1 def f(x: float):

2 # Most elements of Y are constant , thus

inactive

3 Y = np.zeros((2, 2))

4 Y[1, 0] = x

5 Z = Y ** 2

6 return Z.sum()

7

8 def grad_f(x: float , g: float):

9 Y = np.zeros((2, 2))

10 Y[1, 0] = x

11 dZ = np.broadcast_to(g, (2, 2))

12 dY = 2 * Y * dZ

13 # Inactive elements of dY are unused , meaning

their computation could have been avoided.

14 dx = dY[1, 0]

15 return dx

Listing 2. Primal and adjoint functions containing sparsely
active arrays, where most elements are constant w.r.t the
input. Expressed in high-level Python for readability.

𝑌 =

[
0 0
𝑥 0

]
𝑍 =

[
0 0
𝑥2 0

]
𝑍 =

[
𝑔 𝑔

𝑔 𝑔

]
𝑌 =

[
0 0

2𝑥𝑔 0

]
𝑥 = 2𝑥𝑔

Figure 4. Visualization of the sparsity of primal (top) and
adjoint (bottom) values in Listing 2.

%slice = memref.subview %A[2] : memref <4x5xf64 > to

memref <5xf64 >

linalg.generic ... outs(%slice) ...

To ensure the safety of this optimization, the destination
of the insert must not have any uses that postdominate the
insert. The accumulation of gradients in AD results in many
such paired extract/insert ops, making this an important
optimization in AD contexts.

4.2 Active Sparsity
Activity analysis is the process of determining which val-
ues can carry gradient signal from an input variable to an
output variable. Determining activity is important as only ac-
tive values require their gradients computed during AD [8].
However, most AD systems reason about activity at a coarse-
grained level. When tensors are involved, this means that if a
single element is active, the entire tensor is considered active.
In practice, there are instances where only some elements of
a tensor can propagate gradient information. This presents
an optimization opportunity by only computing gradients
for the active elements.

Consider the example in Listing 2. Lines 3 and 4 construct
a 2 by 2 array where only the element at [1, 0] can carry

// Ver. 1

func trmv_full(N, L, x, out):

for i from 0 to N:

for j from 0 to N:

out[i] += L[i,j] * x[j]

// Ver. 2: Optimized compute , dense memory.

func trmv_triangular_computation(N, L, x, out):

for i from 0 to N:

for j from 0 to i:

out[i] += L[i,j] * x[j]

// Ver. 3: Optimized compute , packed memory.

func trmv_packed_computation(N, Lpacked , x, out):

for i from 0 to N:

for j from i + 1 to N:

Lidx = j - (i+1) + i * (2 * N - (i+1)) / 2

out[j] += Lpacked[Lidx] * x[i]

Listing 3. Pseudo-code comparison of triangular matrix-
vector multiplication. The compiler will automatically
generate these examples from the same linalg op depending
on the tensor encoding of L.

a gradient signal. However, the entire array is involved in
downstream computation and most AD systems compute
gradients with respect to all elements of the array. This is
shown in line 12, where the computation of 𝑌 involves 8
multiplications since both 𝑌 and 𝑍 are 2 × 2 arrays. Once
computed, only one entry of 𝑌 is relevant to the gradient of
the output, as shown on line 14.

To address this, we define sparsely active tensors with the
following criteria:

1. A significant portion of entries are zero.
2. Those same entries are constant with respect to the

input, and as such their gradient values will be unused.
LAGrad optimizes these sparsely active tensors when the
patterns of active elements follow a statically known shape,
such as being in the lower or upper triangular portion of
the tensor. Note that the values in the example in Listing 2
satisfy this property in the lower triangular case.
To perform these optimizations, the IR must “merely” be

annotated such that the tensor encoding contains the sparsity
pattern of the operand. The compiler then transforms linalg

ops that contain a sparse operand into loops that iterate over
the nonzero elements of their operands by modifying the
resulting loop bounds. This transformation optimizes com-
putation while leaving zero values materialized in memory.

Building on this, LAGrad contains an additional optimiza-
tion that automatically convert triangular tensors into packed
representation, such that only nonzero values are stored in
memory [2]. This process automatically generates code to
map iteration variables to the indexing scheme of packed
triangular storage. These methods are shown in Listing 3.
The packing of lower triangular tensors potentially improves
cache locality of computation operating on these tensors.
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𝐴 =


• • •
• • •
• • •

 , 𝐵 =

 •
 =⇒ 𝐶 =

• • •


𝐶 [ 𝑗, 𝑖] += 𝐴[𝑖, 𝑘] ∗ 𝐵 [𝑘, 𝑗]

𝑀 =


• • •
• • •
• • •

 , 𝑁 =


•
•
•

 =⇒ 𝑂 =


• • •
• • •
• • •


𝑂 [𝑖, 𝑗] += 𝑀 [𝑖, 𝑘] ∗ 𝑁 [ 𝑗, 𝑘]

Figure 5. Examples of propagating per-dimension spar-
sity patterns through linalg ops. • represents a nonzero
entry. The sparsity of 𝐶 and 𝑂 are automatically inferred
through the sparsity of the inputs and the indexing maps of
each linalg op. Opportunities for sparse code generation are
present when computing 𝑂 despite its lack of sparsity.

These optimizations are not intrinsically linked to AD, but
will be applied to both the primal and adjoint versions of
ops containing these sparse tensors. This is due to how the
gradient of every value in LAGrad has the same type as the
primal value. Thus, primal values marked lower triangular
will also have their gradients automatically annotated lower
triangular, resulting in both benefiting from the optimization.

4.3 Adjoint Sparsity
In addition to active sparsity, sparsity arises in AD when
computing full Jacobian matrices. Recall that the process of
computing a Jacobian matrix involves repeated backward
passes using columns of the identity matrix as seed vectors.
These seed vectors, when used as an argument in linalg

ops, result in many highly sparse intermediate values. Cru-
cially, these sparse values follow predictable patterns such
as having a single element, row, or column be nonzero. The
notion of sparsity is tied to each dimension, where a sparse
dimension can contain at most one location where nonzero
values appear. For example, in the two-dimensional case, a
tensor with two sparse dimensions will only contain one
nonzero element. A tensor with [sparse, dense] dimensions
will contain a single nonzero row, while a tensor with [dense,
sparse] dimensions will contain a single nonzero column.
We refer to these tensors as having one-hot dimensions. This
notion can be extended to few-hot dimensions when there
is a small number of valid indices per dimension that can
contain nonzero elements.

Sparse Propagation. A key property of one-hot and few-
hot tensors is that their use in linalg ops results in propaga-
tion of sparsity. As sparsity is tied to dimensions, the sparsity
of linalg results is statically determined as follows:

• For every linalg op in a program with input tensors
𝐼𝑛𝑇𝑒𝑛𝑠𝑜𝑟𝑠 and output tensors𝑂𝑢𝑡𝑇𝑒𝑛𝑠𝑜𝑟𝑠 , let𝐷𝑖𝑚𝑠 (𝑡)

be the set of loop dimensions for 𝑡 ∈ 𝐼𝑛𝑇𝑒𝑛𝑠𝑜𝑟𝑠 ∪
𝑂𝑢𝑡𝑇𝑒𝑛𝑠𝑜𝑟𝑠 .

• Let 𝑆𝑝𝑎𝑟𝑠𝑒𝐷𝑖𝑚𝑠 (𝑡) be the set of loop dimensions that
iterate over a sparse dimension of 𝑡 .

∀𝑜 ∈ 𝑂𝑢𝑡𝑇𝑒𝑛𝑠𝑜𝑟𝑠 , sparse dimensions are computed as:

𝑆𝑝𝑎𝑟𝑠𝑒𝐷𝑖𝑚𝑠 (𝑜) =
⋃

𝑡 ∈𝐼𝑛𝑇𝑒𝑛𝑠𝑜𝑟𝑠
𝑆𝑝𝑎𝑟𝑠𝑒𝐷𝑖𝑚𝑠 (𝑡) ∩ 𝐷𝑖𝑚𝑠 (𝑜)

For example, consider the op in the first example of Fig-
ure 5, where the second argument 𝐵 is sparse along both
dimensions. This op has these indexing maps for 𝐵 and 𝐶:

𝑚𝑎𝑝𝐵 = (𝑑0, 𝑑1, 𝑑2) → (𝑑2, 𝑑1)
𝑚𝑎𝑝𝐶 = (𝑑0, 𝑑1, 𝑑2) → (𝑑1, 𝑑0)

This results in the following:

𝐷𝑖𝑚𝑠 (𝐵) = 𝑆𝑝𝑎𝑟𝑠𝑒𝐷𝑖𝑚𝑠 (𝐵) = {𝑑2, 𝑑1}
𝐷𝑖𝑚𝑠 (𝐶) = {𝑑1, 𝑑0}

=⇒ 𝑆𝑝𝑎𝑟𝑠𝑒𝐷𝑖𝑚𝑠 (𝐵) ∩ 𝐷𝑖𝑚𝑠 (𝐶) = {𝑑1}

The final result is that 𝐶 has dimensions [sparse, dense],
meaning it contains a nonzero row. This procedure is run
top-down from every function.

Code generation. After sparse propagation analysis, LA-
Grad lowers linalg.generic ops with sparse inputs to loops
that skip over zero values. To this end, LAGrad stores the
indices of nonzero positions for sparse dimensions of tensors
within the compiler. The code generation pipeline uses these
internal data structures to index into sparse tensors.
Indices are propagated in the same way as sparsity for

dimensions. In the previous example, the sparse indices for
the first dimension of 𝐶 are the same as the indices for the
second dimension of 𝐵.

5 Evaluation
The performance of LAGrad is evaluated in two stages. First,
individual optimizations are selectively disabled to exam-
ine the effect of each optimization’s individual contribution.
Then, the fully optimized version is evaluated against both
Enzyme [16] and PyTorch [17].
LAGrad and Enzyme both perform source-to-source AD

in a compiler infrastructure, but they differ on the level of
abstraction of their input and output IR. PyTorch performs
AD on a high level of abstraction, but its AD implementation
is operator-overloading based.

5.1 Experimental Methodology
The performance of all AD systems are evaluated using AD-
Bench [21], a standard machine learning benchmark suite.
ADBench consists of a gaussian mixture model (GMM), bun-
dle adjustment (BA), a hand tracking model (Hand), and a
long short term memory network (LSTM).

Datasets for each ADBench benchmark are chosen in fig-
ures to demonstrate the performance of the smallest problem
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Figure 6. Performance impacts of individual optimizations in the LAGrad pipeline. The baseline used is LAGrad run through
-O3 without any of the custom optimizations implemented in this work.

size that both Enzyme and LAGrad require more than 5 mil-
liseconds to finish (labelled small in the figures), the largest
problem size that both tools can finish within 40 minutes
(labelled large), and the median problem size between the
two (labelled medium). Measurements for smaller datasets
introduce higher variance in the results, while runs longer
than 40 minutes are considered timeouts.

A triangular matrix vector multiplication (TRMV) is used
to measure the isolated effect of active sparsity, and a two-
layer multi-layer perceptron (MLP) is used to evaluate LA-
Grad on a classical neural network application. The evaluated
sizes are [1024, 2048, 4096] for the TRMV benchmark and
hidden size [256, 512, 1024] for the MLP benchmark.

All experiments are run on a 2015 MacBook Pro with a 2.2
GHz Quad-Core Intel Core i7 processor and 16 GB of RAM.
The operating system is macOS Catalina version 10.15.5.

Run time evaluations are measured by taking the median
runtime of running each benchmark 5 times with 1 warmup
run. Memory consumption is measured by taking the peak
resident set size during the execution of each benchmark.
Relative memory reduction is reported, where a value of 2
means LAGrad used 2× less memory than the compared tool.
Baseline LAGrad. Each benchmark from the ADBench

suite is translated by hand to high level MLIR in the linalg,
tensor, and scf dialects. They are then run through LAGrad
to differentiate. The generated adjoints are first bufferized to
linalg-on-memrefs, then lowered to loops in the scf dialect
before being lowered to the LLVM dialect. Finally, the pro-
grams are translated to LLVM IR, then compiled to object
files with clang using the -O3 optimization level.

5.2 Optimizations
Optimizations presented in this work are evaluated by en-
abling their respective flags to augment the baseline. The
program is evaluated after enabling each optimization in the
given order: in-place bufferization, stack buffer promotion,
active sparsity, adjoint sparsity, and library call integration.
Results of these optimizations are summarized in Figure 6.

Active Sparsity is evaluated in two stages: 1) Triangu-
lar computation is optimized while sparse tensors are left
fully materialized (Tri Comp) 2) Sparse tensors are packed
to store only nonzero entries (Tri Packing). The benchmarks
that present opportunities for active sparsity are the TRMV
and GMM benchmarks. The GMM benchmark contains a
triangular matrix vector multiplication in addition to com-
putation of matrix norms of triangular tensors. The TRMV
benchmark primarily benefits from optimizing computation
with modest cache locality gains from packing, while the
cache benefit of packing is more strongly felt in the GMM
benchmark due to the matrix norm computations.
Adjoint Sparsity benefits the computation of full Jaco-

bian matrices. Hand tracking is the one evaluated benchmark
that performs this, which results in a number of dimension-
level sparse values. The resulting speedup of sparse code
generation is increased for larger datasets which have Jaco-
bians with a greater number of rows.
Stack Buffer Promotion is a built-in MLIR pass that

promotes memref allocations statically known to be below a
set size from the heap to the stack. This can improve perfor-
mance when all buffers required to compute an adjoint are
small, such as in the BA benchmark, which consists entirely
of computation on tensors with fewer than 12 elements. Ap-
plying stack buffer promotion to BA results in the adjoint
program allocating memory entirely on the stack, leading to
the speedup observed in Figure 6.

Library Call Integration. The high-level nature of linalg
ops in MLIR makes it straightforward to target optimized lin-
ear algebra libraries. LAGrad has basic support for replacing
named ops in the linalg dialect (linalg.matmul, linalg.matvec)
and their pullbacks with calls to OpenBLAS [26] routines.

5.3 Comparison with State of the Art
After evaluating individual optimizations, we now turn our
attention to comparing the most optimized LAGrad variant
with Enzyme [16]. Results are summarized in Figure 7.
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Table 1. Geometric mean speedups and relative memory reduction of each benchmark across all evaluated datasets.

Benchmark Speedup w.r.t.
Enzyme (MLIR)

Memory reduction
w.r.t. Enzyme (MLIR)

Speedup w.r.t.
PyTorch

Memory reduction
w.r.t. PyTorch

TRMV 6.9 2.2 1.8 5.1

GMM 1.1 35.0 6.4 74.0

BA 2.1 0.9 1419.1 103.1

Hand 2.8 7.8 168.7 61.0

LSTM 1.5 3.9 268.6 38.6

MLP 79.6 8.0 2.3 8.8

Geomean 4.2 5.2 34.6 30.5

Enzyme is evaluated with two different pipelines for com-
pleteness. The first pipeline begins from the MLIR transla-
tion of each benchmark, while the second begins from the
C implementations provided in ADBench. Both are lowered
to LLVM IR before being run through Enzyme’s optimiza-
tion pipeline outlined in [16]. The purpose of including both
pipelines is to compare Enzyme and LAGrad from the same
starting program, while also comparing against the baseline
C implementations evaluated in [16].

TRMV demonstrates one of the benefits of performing
AD on linalg ops. Enzyme differentiates TRMV as a nested
loop without the context of it being a linear algebra opera-
tion. This results in it storing a value to the tape for every
loop iteration, using O(𝑛2) memory. In contrast, LAGrad
produces a linalg op as its pullback with no memory over-
head. LAGrad is then able to remove the primal op as it is
unneeded, an optimization that both PyTorch and Enzyme
are unable to perform in this case. PyTorch cannot remove
the primal op because its run-time AD requires execution
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of the complete primal to track which ops to differentiate.
LAGrad outperforms PyTorch via active sparsity, in spite of
PyTorch’s usage of high performance libraries.
Gaussian Mixture Models (GMM). LAGrad displays

comparable performance with Enzyme on Gaussian Mixture
Models. Notably, the GMM benchmark contains operations
on actively sparse lower triangular tensors. Both Enzyme and
LAGrad use packed representations, but LAGrad automati-
cally generates packed code from annotated linalg ops (Ver.
3 of Listing 3) while in Enzyme, the primal must be manually
coded with these index computations for full performance.
Bundle Adjustment (BA). The speedup over Enzyme

with bundle adjustment is due to stack buffer promotion.
Enzyme crucially cannot benefit from the same optimization
due to the unstructured nature of the control flow graphs of
LLVM IR. Buffers allocated on the stack in the primal are of-
ten moved to heap allocations by Enzyme to ensure that they
are accessible in the adjoint. However, LAGrad preserves the
structured control flow of the primal when generating the
adjoint, making this optimization safe to perform.
Long Short Term Memory (LSTM). The performance

difference of LAGrad over Enzyme is primarily due to the
difference in memory usage. The MLIR variant of Enzyme is
penalized by naive bufferization, as Enzyme must produce
gradients of every intermediate buffer. LAGrad does not have
this issue by virtue of operating at the tensor level, where
memory is abstracted.
Hand Tracking (Hand). Hand tracking involves a full

Jacobian computation. It thus benefits from the propagation
and code generation of adjoint sparsity. The benefit is more
pronounced as the size of the Jacobian increases, and would
be much more challenging to implement in Enzyme due to
needing to recover the high level information that is directly
included in linalg ops in MLIR.

Multi-Layer Perceptron (MLP). The performance of the
MLP benchmark is almost entirely dominated by dense linear
algebra kernels, something that Enzyme is currently unable
to efficiently differentiate. LAGrad and PyTorch both lever-
age libraries to outperform Enzyme. The speedup LAGrad
observes over PyTorch is due to the performance of Open-
BLAS, which LAGrad uses, over the PyTorch CPU backend.

6 Related Work
The most commonly used methods of automatic differentia-
tion in ML are based on operator overloading (OO). These
include PyTorch [17], TensorFlow eager [1], Autograd [15],
and JAX [5]. As OO-based methods perform AD by tracing
program execution at runtime, they give up the potential for
whole program optimization that is possible in source-to-
source methods. These methods will implicitly unroll loops,
losing any structured control flow present in the primal. This
hinders the opportunity to perform optimizations such as
tape size reduction in these systems.

Zygote [9] performs source transformation on an SSA-
form IR in the Julia compiler. Unlike MLIR, this IR is not a
compilation target supported by multiple frontends. In gen-
eral, the compiler infrastructure of MLIR makes it straight-
forward to implement new frontends to LAGrad.
Tapenade [7] supports both forward and reverse mode

AD on Fortran and C code. Its approach to differentiating
structured control flow greatly influenced LAGrad. It reasons
about arrays merely as pointers, making it challenging to
support array-level optimizations to exploit sparsity.

Tangent [23] is similar to LAGrad in performing source-to-
source AD on high level code. It boasts improved debugging
by generating readable Python code, but incurs interpreter
overhead for both primal and adjoint code. This presents
challenges in performance critical ML workloads.
Fsmooth [20] differentiates a functional array language

using compiler rewrite rules to produce optimal derivative
expressions. The level of abstraction of functional primitives
carries less static information than MLIR. It also has the
limitations of forward mode AD when computing gradient
vectors of many parameters.

To the best of the authors’ knowledge, no other AD system
operates on immutable arrays with the semantics of tensor
MLIR. As we have shown, this reduces the complexity of
performing AD-specific static analyses and optimizations.

7 Conclusion
This work demonstrates the benefit of performing source-
to-source AD on a high level language. Some of the opti-
mizations presented would be infeasible to implement in
operator-overloading based systems, while others would be
challenging to rediscover in low level languages. LAGrad is
able to discover opportunities to elide the gradient tape, long
considered a fundamental challenge of reverse-mode AD.

By targeting the compiler lingua franca of MLIR, LAGrad
can benefit from the ecosystem that MLIR provides. The
MLIR infrastructure makes it straightforward to define new
frontends that target the subset of MLIR that LAGrad can dif-
ferentiate. Motivations of MLIR include improving reusabil-
ity of high-level compiler optimizations and targeting hetero-
geneous hardware accelerators. As MLIR matures towards
these goals, LAGrad may further benefit in tandem.
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