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What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.

- Grouped into dialects with varying abstraction level. Some
examples:

- linalg: high-level linear algebra (matmuls, convolution, dot
products)

- scf: structured control flow (if statements, for/while loops)

- 1lvm: closely maps to LLVM IR (GEP, ptrtoint, cond_br)

- memref: shaped regions of memory (analogous to NumPy's
ndarray)

- Your dialect! Easy to add new dialects with customizable
semantics



Why use MLIR?

Benefits
AD
MLIR (Enzyme)
Benefits

We believe bringing together MLIR and AD (in the form of Enzyme)
will mutually benefit each other.
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MLIR benefits AD: memcpy, revisited

In LLVM IR/C/C++, given types # actual types (void = everywhere!)

void *memcpy(void *dest, const void * src, size_t n);

Enzyme requires type analysis to address this - can significantly
increase compile times

In MLIR, the canonical way of copying a MemRef is:

- -

memref.copy(%src, %dst) : memref<?xf323

loood

Using MLIR has potential to improve compile times - reduced need
for static analysis: better information in the IR
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MLIR benefits AD

- AD in MLIR operates on smaller code size with better
information than LLVM

- High level languages are easier to differentiate than low level
languages
- Some optimizations easier to express on high-level code’

- Enzyme-MLIR allows reuse of optimization passes specific to AD for
different applications

- Core thesis of Enzyme: optimize your code before running AD. This
also applies to MLIR!

- Enzyme-MLIR makes AD extensible: add AD to your dialect!

TPeng and Dubach, ‘LAGrad: Statically Optimized Differentiable Programming in MLIR'.
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Interfaces in MLIR are key in making Enzyme-MLIR dialect agnostic

- In general, analyses and transformations can interact with Ops
via their Interfaces

- Enzyme-MLIR differentiates any Op that implements
ReverseAutoDiffOpInterface
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Primary algorithm?:

1. Initialize/zero out shadow memory and caches
2. Construct reversed control flow graph
3. Synthesize differential operations

ReverseAutoDiffOpInterface {
// Synthesize differential instructions
void createReverseModeAdjoint(...) }

- You can call Enzyme-MLIR to recursively differentiate child regions
here!

2Moses and Churavy, ‘Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients'.



AutoDiffOpinterface

ReverseAutoDiffOpInterface {
// Store any values required to compute the gradient
SmallVector<Value> cacheValues(GradientUtils =*)

// Initialize required shadow memory
void createShadowValues(OpBuilder &, GradientUtils =*)

// Synthesize differential instructions
void createReverseModeAdjoint(OpBuilder &,
GradientUtils *, SmallVector<Value> caches)



enzyme.gradient

%gradient = "enzyme.init"() : () ->
lenzyme.Gradient<f64>

%1 = "enzyme.get"(%gradient) : (l!enzyme.Gradient<f64>)
-> fé4

"enzyme.set"(%gradient, %2) : (!enzyme.Gradient<f64>,
fes) -> ()



enzyme.cache

%cache = "enzyme.init"() : () -> l'enzyme.Cache<i32>

"enzyme.push"(%cache, %1) : (!enzyme.Cache<i32>, i32)

-> ()
%2 = "enzyme.pop"(%cache) : (!enzyme.Cache<i32>) -> i32

%3 "enzyme.get"(cache) : (l!enzyme.Cache<i32>) -> i32

1
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General Pattern

// initialization
%dx = enzyme.init : !enzyme.Gradient<f64>
%cache = enzyme.init : !enzyme.Cache<f64>

// forward pass
enzyme.push %cache, %x
%result = "some.operation"(%x)

// backward pass

%x_restored = enzyme.pop %cache

%0 = enzyme.get %dx

%1 = "dsome.operation"(%x_restored, %dresult)
enzyme.set %dx, %1 + %0
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Optimization

- Code can be lowered arbitrarily before AD
- Code can be optimized before AD

- Post-AD optimizations are decoupled from core AD procedure

- High-level info preserved: enzyme.get vs memref.load
- You can specifically target these in your optimizations!
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Usage Example

Recall: Enzyme-MLIR requires that active ops implement the
ReverseAutoDiffOpInterface

Consists of three interface methods:

// Store any values required to compute the derivative
SmallVector<Value> cacheValues(GradientUtils =)

// Initialize required shadow memory
void createShadowVvalues(OpBuilder &, GradientUtils =*)

// Synthesize differential instructions

void createReverseModeAdjoint(OpBuilder &,
GradientUtils =%, SmallVector<Value> caches)

14



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)
// No caches required

SmallVector<Value> cacheValues(...) {
return SmallVector<Value>();

}



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)
// No caches required

SmallVector<Value> cacheValues(...) {
return SmallVector<Value>();

}

// No shadow required
void createShadowValues(...) {}



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)

// No caches required
SmallVector<Value> cacheValues(...) {
return SmallVector<Value>();

}

// No shadow required
void createShadowValues(...) {}

void createReverseModeAdjoint(addOp, builder, gutils,
caches) {
Value dr = invert(addOp.getResult());
// emit:
// invert(addOp.LHS) += dr
// invert(addOp.RHS) += dr



Derivative of r=ax b = (0a=Db x dr,0b = a x Or)
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Derivative of r=ax b = (0a=Db x dr,0b = a x Or)

SmallVector<Value> cacheValues(...) {
Value cachedLHS = // init cache, push LHS
Value cachedRHS = // init cache, push RHS
return SmallVector<Value>{cachedRHS, cachedLHS};
}
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Derivative of r=ax b = (0a=Db x dr,0b = a x Or)

SmallVector<Value> cacheValues(...) {
Value cachedLHS = // init cache, push LHS
Value cachedRHS = // init cache, push RHS
return SmallVector<Value>{cachedRHS, cachedLHS};
}

// No shadow required
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Derivative of r=ax b = (da=b x dr,0b =a x 0r)

SmallVector<Value> cacheValues(...) {
Value cachedLHS = // init cache, push LHS
Value cachedRHS = // init cache, push RHS
return SmallVector<Value>{cachedRHS, cachedLHS};
}

// No shadow required

void createReverseModeAdjoint(mulOp, ...) {
Value dr = invert(mulOp.getResult());
// emit:

// invert(mulOp.LHS) += cachedRHS = dr
// invert(mulOp.RHS) += cachedLHS = dr

16



// No caches required



// No caches required

void createShadowvalues(allocOp, ...) {
// Allocate a shadow MemRef of the same shape/type
as the original
auto shadow = create<memref::AllocOp>(
allocOp.getType(), allocOp.getShape());
fillwithZeros(shadow);
mapShadow(allocOp, shadow);

// No synthesis required
void createReverseModeAdjoint(...) {}
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memref.subview

How do we differentiate memref.subview?

A memref<2x3> =

OA : memref<2x3> =

] B :memref<2> = A[:, 1]

o

] OB : memref<2> = 0A[:, 1]

o

Shadow of the subview = Subview of the shadow



memref.subview

// No caches required

void createShadowValues(subviewOp, ...) {
// Shadow of the subview = subview of the shadow
Value source = invert(subviewOp.getSource());
auto shadowView = create<memref::SubViewOp>(source,
subviewOp.getIndices());
mapShadow(subviewOp, shadowView);

// No synthesis required

19
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Future Work

- Explore dataflow analysis in MLIR to handle type analysis,
activity analysis, differential use analysis, etc

- MLIR currently lacks a mature alias analysis implementation

- Optimize! Explore both general and AD-specific optimizations,
benchmark both compile-time and run-time performance

20



Open Questions

- Can we expose an APl that doesn't require totally buying into
MLIR? Can users write their AD implementations in e.g. Julia or
Rust?

- What information can be inferred? Is the current set of interface
methods necessary and/or sufficient?

21



Thank you for listening!
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