Hackable Autodiff

Extending Enzyme to MLIR for Reverse Mode Gradients

Martin Eppert ! Mai Jacob Peng ?
Enzyme Conference, February 23, 2023
Technical University of Munich

2McGill University



Motivation



What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.



What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.

- Grouped into dialects with varying abstraction level. Some
examples:



What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.

- Grouped into dialects with varying abstraction level. Some
examples:

- linalg: high-level linear algebra (matmuls, convolution, dot
products)



What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.
- Grouped into dialects with varying abstraction level. Some
examples:
- linalg: high-level linear algebra (matmuls, convolution, dot
products)
- scf: structured control flow (if statements, for/while loops)



What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.

- Grouped into dialects with varying abstraction level. Some
examples:

- linalg: high-level linear algebra (matmuls, convolution, dot
products)

- scf: structured control flow (if statements, for/while loops)

- 1lvm: closely maps to LLVM IR (GEP, ptrtoint, cond_br)



What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.

- Grouped into dialects with varying abstraction level. Some
examples:

- linalg: high-level linear algebra (matmuls, convolution, dot
products)

- scf: structured control flow (if statements, for/while loops)

- 1lvm: closely maps to LLVM IR (GEP, ptrtoint, cond_br)

- memref: shaped regions of memory (analogous to NumPy's
ndarray)



What is MLIR?

What even is MLIR? Why would we use it?

- Multi-Level Intermediate Representation: compiler infrastructure
and IR that is extensible.

- Grouped into dialects with varying abstraction level. Some
examples:

- linalg: high-level linear algebra (matmuls, convolution, dot
products)

- scf: structured control flow (if statements, for/while loops)

- 1lvm: closely maps to LLVM IR (GEP, ptrtoint, cond_br)

- memref: shaped regions of memory (analogous to NumPy's
ndarray)

- Your dialect! Easy to add new dialects with customizable
semantics



Why use MLIR?

Benefits
AD
MLIR (Enzyme)
Benefits

We believe bringing together MLIR and AD (in the form of Enzyme)
will mutually benefit each other.



AD benefits MLIR

- AD is ubiquitous in users of MLIR e.g. in Machine Learning and
HPC



AD benefits MLIR

- AD is ubiquitous in users of MLIR e.g. in Machine Learning and
HPC
- More than just tensor DSLs! Projects like Polygeist and Flang-new.
- AD is currently re-implemented for each application
- Many AD implementations have their own quirks and assumptions
(e.g. around in-place updates)



AD benefits MLIR

- AD is ubiquitous in users of MLIR e.g. in Machine Learning and
HPC
- More than just tensor DSLs! Projects like Polygeist and Flang-new.
- AD is currently re-implemented for each application
- Many AD implementations have their own quirks and assumptions
(e.g. around in-place updates)

Many MLIR users target LLVM IR. Why not just use LLVM Enzyme?



Why not just use LLVM Enzyme?

Matrix multiplication in the
linalg dialect of MLIR:

linalg.matmul
ins(A, B :
memref<?x?xf32>,
memref<?x?xf32>)
outs(C :
memref<?x?xf32>)



Why not just use LLVM Enzyme?

That same code in LLVM IR:;

Matrix multiplication in the
linalg dialect of MLIR:

linalg.matmul
ins(A, B :
memref<?x?xf32>,
memref<?x?xf32>)
outs(C :
memref<?x?xf32>)




MLIR benefits AD: memcpy, revisited

In LLVM IR/C/C++, given types # actual types (void = everywhere!)

void *memcpy(void *dest, const void * src, size_t n);



MLIR benefits AD: memcpy, revisited

In LLVM IR/C/C++, given types # actual types (void = everywhere!)

void *memcpy(void *dest, const void * src, size_t n);

Enzyme requires type analysis to address this - can significantly
increase compile times



MLIR benefits AD: memcpy, revisited

In LLVM IR/C/C++, given types # actual types (void = everywhere!)

void *memcpy(void *dest, const void * src, size_t n);

Enzyme requires type analysis to address this - can significantly
increase compile times

In MLIR, the canonical way of copying a MemRef is:

- -

memref.copy(%src, %dst) : memref<?xf323

loood



MLIR benefits AD: memcpy, revisited

In LLVM IR/C/C++, given types # actual types (void = everywhere!)

void *memcpy(void *dest, const void * src, size_t n);

Enzyme requires type analysis to address this - can significantly
increase compile times

In MLIR, the canonical way of copying a MemRef is:

- -

memref.copy(%src, %dst) : memref<?xf323

loood

Using MLIR has potential to improve compile times - reduced need
for static analysis: better information in the IR



MLIR benefits AD

- AD in MLIR operates on smaller code size with better
information than LLVM

TPeng and Dubach, ‘LAGrad: Statically Optimized Differentiable Programming in MLIR’.



MLIR benefits AD

- AD in MLIR operates on smaller code size with better
information than LLVM

- High level languages are easier to differentiate than low level
languages

TPeng and Dubach, ‘LAGrad: Statically Optimized Differentiable Programming in MLIR’.



MLIR benefits AD

- AD in MLIR operates on smaller code size with better
information than LLVM

- High level languages are easier to differentiate than low level
languages

- Some optimizations easier to express on high-level code’

TPeng and Dubach, ‘LAGrad: Statically Optimized Differentiable Programming in MLIR'.



MLIR benefits AD

- AD in MLIR operates on smaller code size with better
information than LLVM

- High level languages are easier to differentiate than low level
languages
- Some optimizations easier to express on high-level code’

- Enzyme-MLIR allows reuse of optimization passes specific to AD for
different applications

TPeng and Dubach, ‘LAGrad: Statically Optimized Differentiable Programming in MLIR'.



MLIR benefits AD

- AD in MLIR operates on smaller code size with better
information than LLVM

- High level languages are easier to differentiate than low level
languages
- Some optimizations easier to express on high-level code’
- Enzyme-MLIR allows reuse of optimization passes specific to AD for
different applications

- Core thesis of Enzyme: optimize your code before running AD. This
also applies to MLIR!

TPeng and Dubach, ‘LAGrad: Statically Optimized Differentiable Programming in MLIR'.



MLIR benefits AD

- AD in MLIR operates on smaller code size with better
information than LLVM

- High level languages are easier to differentiate than low level
languages
- Some optimizations easier to express on high-level code’

- Enzyme-MLIR allows reuse of optimization passes specific to AD for
different applications

- Core thesis of Enzyme: optimize your code before running AD. This
also applies to MLIR!

- Enzyme-MLIR makes AD extensible: add AD to your dialect!

TPeng and Dubach, ‘LAGrad: Statically Optimized Differentiable Programming in MLIR'.



Implementation



MLIR Interfaces

Interfaces in MLIR are key in making Enzyme-MLIR dialect agnostic

- In general, analyses and transformations can interact with Ops
via their Interfaces



MLIR Interfaces

Interfaces in MLIR are key in making Enzyme-MLIR dialect agnostic

- In general, analyses and transformations can interact with Ops
via their Interfaces

- Enzyme-MLIR differentiates any Op that implements
ReverseAutoDiffOpInterface



Primary algorithm?:

1. Initialize/zero out shadow memory and caches
2. Construct reversed control flow graph

3. Synthesize differential operations

2Moses and Churavy, ‘Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients'.



Primary algorithm?:

1. Initialize/zero out shadow memory and caches

ReverseAutoDiffOpInterface {
// Store any values required to compute the
gradient
SmallVector<Value> cacheValues(...)

// Initialize required shadow memory
void createShadowValues(...) }

2. Construct reversed control flow graph

3. Synthesize differential operations

2Moses and Churavy, ‘Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients'.




Primary algorithm?:

1. Initialize/zero out shadow memory and caches

2. Construct reversed control flow graph
- Enzyme-MLIR does this for you!

3. Synthesize differential operations

2Moses and Churavy, ‘Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients'.



Primary algorithm?:

1. Initialize/zero out shadow memory and caches
2. Construct reversed control flow graph
3. Synthesize differential operations

ReverseAutoDiffOpInterface {
// Synthesize differential instructions
void createReverseModeAdjoint(...) }

- You can call Enzyme-MLIR to recursively differentiate child regions
here!

2Moses and Churavy, ‘Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients'.



AutoDiffOpinterface

ReverseAutoDiffOpInterface {
// Store any values required to compute the gradient
SmallVector<Value> cacheValues(GradientUtils =*)

// Initialize required shadow memory
void createShadowValues(OpBuilder &, GradientUtils =*)

// Synthesize differential instructions
void createReverseModeAdjoint(OpBuilder &,
GradientUtils *, SmallVector<Value> caches)



enzyme.gradient

%gradient = "enzyme.init"() : () ->
lenzyme.Gradient<f64>

%1 = "enzyme.get"(%gradient) : (l!enzyme.Gradient<f64>)
-> fé4

"enzyme.set"(%gradient, %2) : (!enzyme.Gradient<f64>,
fes) -> ()



enzyme.cache

%cache = "enzyme.init"() : () -> l'enzyme.Cache<i32>

"enzyme.push"(%cache, %1) : (!enzyme.Cache<i32>, i32)

-> ()
%2 = "enzyme.pop"(%cache) : (!enzyme.Cache<i32>) -> i32

%3 "enzyme.get"(cache) : (l!enzyme.Cache<i32>) -> i32

1



General Pattern

// initialization
%dx = enzyme.init : !enzyme.Gradient<f64>
%cache = enzyme.init : !enzyme.Cache<f64>



General Pattern

// initialization
%dx = enzyme.init : !enzyme.Gradient<f64>
%cache = enzyme.init : !enzyme.Cache<f64>

// forward pass
enzyme.push %cache, %x
%result = "some.operation"(%x)



General Pattern

// initialization
%dx = enzyme.init : !enzyme.Gradient<f64>
%cache = enzyme.init : !enzyme.Cache<f64>

// forward pass
enzyme.push %cache, %x
%result = "some.operation"(%x)

// backward pass

%x_restored = enzyme.pop %cache

%0 = enzyme.get %dx

%1 = "dsome.operation"(%x_restored, %dresult)
enzyme.set %dx, %1 + %0



Optimization

- Code can be lowered arbitrarily before AD



Optimization

- Code can be lowered arbitrarily before AD

- Code can be optimized before AD



Optimization

- Code can be lowered arbitrarily before AD
- Code can be optimized before AD
- Post-AD optimizations are decoupled from core AD procedure



Optimization

- Code can be lowered arbitrarily before AD
- Code can be optimized before AD

- Post-AD optimizations are decoupled from core AD procedure
- High-level info preserved: enzyme.get vs memref.load



Optimization

- Code can be lowered arbitrarily before AD
- Code can be optimized before AD

- Post-AD optimizations are decoupled from core AD procedure

- High-level info preserved: enzyme.get vs memref.load
- You can specifically target these in your optimizations!



Usage Example




Usage Example

Recall: Enzyme-MLIR requires that active ops implement the
ReverseAutoDiffOpInterface

Consists of three interface methods:

// Store any values required to compute the derivative
SmallVector<Value> cacheValues(GradientUtils =)

// Initialize required shadow memory
void createShadowVvalues(OpBuilder &, GradientUtils =*)

// Synthesize differential instructions

void createReverseModeAdjoint(OpBuilder &,
GradientUtils =%, SmallVector<Value> caches)

14



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)
// No caches required

SmallVector<Value> cacheValues(...) {
return SmallVector<Value>();

}



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)
// No caches required

SmallVector<Value> cacheValues(...) {
return SmallVector<Value>();

}

// No shadow required
void createShadowValues(...) {}



arith.addf

Derivative of r=a+b = (da = 0r,0b = 0r)

// No caches required
SmallVector<Value> cacheValues(...) {
return SmallVector<Value>();

}

// No shadow required
void createShadowValues(...) {}

void createReverseModeAdjoint(addOp, builder, gutils,
caches) {
Value dr = invert(addOp.getResult());
// emit:
// invert(addOp.LHS) += dr
// invert(addOp.RHS) += dr



Derivative of r=ax b = (0a=Db x dr,0b = a x Or)

16



Derivative of r=ax b = (0a=Db x dr,0b = a x Or)

SmallVector<Value> cacheValues(...) {
Value cachedLHS = // init cache, push LHS
Value cachedRHS = // init cache, push RHS
return SmallVector<Value>{cachedRHS, cachedLHS};
}

16



Derivative of r=ax b = (0a=Db x dr,0b = a x Or)

SmallVector<Value> cacheValues(...) {
Value cachedLHS = // init cache, push LHS
Value cachedRHS = // init cache, push RHS
return SmallVector<Value>{cachedRHS, cachedLHS};
}

// No shadow required

16



Derivative of r=ax b = (da=b x dr,0b =a x 0r)

SmallVector<Value> cacheValues(...) {
Value cachedLHS = // init cache, push LHS
Value cachedRHS = // init cache, push RHS
return SmallVector<Value>{cachedRHS, cachedLHS};
}

// No shadow required

void createReverseModeAdjoint(mulOp, ...) {
Value dr = invert(mulOp.getResult());
// emit:

// invert(mulOp.LHS) += cachedRHS = dr
// invert(mulOp.RHS) += cachedLHS = dr

16



// No caches required



// No caches required

void createShadowvalues(allocOp, ...) {
// Allocate a shadow MemRef of the same shape/type
as the original
auto shadow = create<memref::AllocOp>(
allocOp.getType(), allocOp.getShape());
fillwithZeros(shadow);
mapShadow(allocOp, shadow);

// No synthesis required
void createReverseModeAdjoint(...) {}



memref.subview

How do we differentiate memref.subview?



memref.subview

How do we differentiate memref.subview?

11011
31411

oo

A :memref<2x3> = l ] B :memref<2> = A[:, 1]



memref.subview

How do we differentiate memref.subview?

A memref<2x3> =

OA : memref<2x3> =

] B :memref<2> = A[:, 1]

o

] OB : memref<2> = 0A[:, 1]

o

Shadow of the subview = Subview of the shadow



memref.subview

// No caches required

void createShadowValues(subviewOp, ...) {
// Shadow of the subview = subview of the shadow
Value source = invert(subviewOp.getSource());
auto shadowView = create<memref::SubViewOp>(source,
subviewOp.getIndices());
mapShadow(subviewOp, shadowView);

// No synthesis required

19



Future Work




Future Work

- Explore dataflow analysis in MLIR to handle type analysis,
activity analysis, differential use analysis, etc

- MLIR currently lacks a mature alias analysis implementation

- Optimize! Explore both general and AD-specific optimizations,
benchmark both compile-time and run-time performance

20



Open Questions

- Can we expose an APl that doesn't require totally buying into
MLIR? Can users write their AD implementations in e.g. Julia or
Rust?

- What information can be inferred? Is the current set of interface
methods necessary and/or sufficient?

21



Thank you for listening!



Bibliography

¥ Moses, William and Valentin Churavy. ‘Instead of Rewriting
Foreign Code for Machine Learning, Automatically Synthesize Fast
Gradients' In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc.,
2020, pp. 12472-12485. URL:
https://proceedings.neurips.cc/paper/2020/file/
9332c513ef44b682e9347822c2e457ac-Paper. pdf.

¥ Peng, Mai Jacob and Christophe Dubach. ‘LAGrad: Statically
Optimized Differentiable Programming in MLIR'. In: Proceedings of
the 32nd ACM SIGPLAN International Conference on Compiler
Construction. CC 2023. Montréal, QC, Canada: Association for
Computing Machinery, 2023, pp. 228-238. DOI:
10.1145/3578360.3580259. URL:
https://doi.org/10.1145/3578360.3580259.


https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://doi.org/10.1145/3578360.3580259
https://doi.org/10.1145/3578360.3580259

	Motivation
	Implementation
	Usage Example
	Future Work
	Appendix

